Chemical Communications

Number 17 1990

Cation-regulated Viologen-mediated Transmembrane Electron Transfer

Brian C. Patterson and James K. Hurst*

Department of Chemical and Biological Sciences, Oregon Graduate Institute of Science and Technology, 19600 N.W. Von Neumann Drive, Beaverton, OR 97006-1999, USA

A chemically switchable microheterogeneous redox system exhibiting vectorial charge transfer has been developed by asymmetrically organizing viologens across dihexadecylphosphate vesicle bilayers.

We will describe a microheterogeneous system wherein oxidation-reduction across a bilayer membrane is controlled by addition of a lipophilic ion to the system. Because transmembrane charge transfer occurs only in the presence of an added ion, this system is of interest to the field of molecular electronics;¹ *i.e.*, the lipophilic ion provides a switching mechanism controlling electron conduction across the bilayer.

Methyl viologen (MV²⁺) was entrapped within dihexadecylphosphate (DHP) vesicles by sonicating the DHP in 20 mm Tris-HCl, 200 µм N,N'-dimethyl-4,4'-bipyridinium dichloride (MVCl₂) at pH 8.0, followed by removal of external MV^{2+} by cation exchange chromatography (Chelex 100). The internal MV²⁺ concentration was then determined spectrophotometrically.² Varying amounts of 1-methyl-1'-sulphanaton-propyl-4,4'-bipyridinium⁴ (MSV⁺) chloride (1) were then added to the vesicle suspension. After purging the solution of oxygen by bubbling with argon, an anaerobic solution containing excess sodium dithionite $(S_2O_4^{2-})$ was added. Immediate one-electron reduction of the viologen to the radical ensued, but only to an extent equal to the concentration of externally added MSV+. After several minutes, about 60% of the total viologen in a system containing equimolar internal MV²⁺ and external MSV⁺ was reduced and no further changes occurred over a period of 5 min. If an anaerobic solution of 1-methyl-4,4'-bipyridinium (MB⁺) (2) was then added in slight molar excess, the remainder of the viologen was reduced within a few minutes. One-to-one correspondence was observed between the number of elec-

trons allowed to flow into the vesicles and the number of MB⁺ ions added to the bulk aqueous phase. The additional viologen radical formed upon adding 10, 21, and 31 μ M MB⁺ to systems containing equimolar internal MV²⁺ and external MSV⁺ was 12, 21, and 31 μ M, respectively. Although the stoicheiometry of electron flow was independent of the concentration of external MSV⁺ (6—50 μ M), the rate of internal MV²⁺ reduction increased with increasing MSV⁺, indicating that the latter functioned as a transmembrane redox mediator. The close 1:1 correspondence of MB⁺ added to MV²⁺ reduced is demonstrated in Figure 1, where viologen reduction attending MB⁺ addition is monitored spectrophotometrically at 546 nm.

Since charge transfer across the bilayer is electrogenic, compensatory ion movement is necessary to maintain electroneutrality.² We have shown that externally bound MV^{2+} mediates reduction of MV^{2+} occluded within DHP vesicles.³ Because MV^+ was the only lipophilic ion in that system, it co-migrated with the electron in 1:1 stoicheiometry. In the present case, reduced MSV is uncharged and cannot dissipate the electrical gradient generated by transmembrane charge displacement. Therefore, in the absence of ions capable of penetrating the bilayer, a membrane potential quickly developed which blocked further reaction. Adding MB⁺, which has no redox chemistry under these conditions

Figure 1. Effect of anaerobic addition of MB⁺ upon 4 mm suspensions of DHP vesicles containing initially 34 μ m internal MV²⁺ and 53 μ m MSV⁺ plus 0.4 mm Na₂S₂O₄ in the external medium (20 mm Tris–HCl, pH 8.0, 23 °C).

Scheme 1. Proposed mechanism for transmembrane oxidation-reduction: The k_2 — k_5 steps are electrogenic and must be balanced such that overall electroneutrality is maintained; ${}^{2}k_{5}$ arises as a consequence of electroneutral MV+–MB+ exchange ($k_3 + k_4$).

but does have high intrinsic permeability towards bilayer membranes,⁴ provided a mechanism for collapsing the electrical gradient, thereby allowing transmembrane redox to proceed to completion.

Cation-exchange chromatography was used to probe further the nature of transmembrane translocation of the viologens and MB⁺ ion attending charge transfer. When a 4 mm suspension of DHP vesicles in 20 mm Tris–HCl buffer, pH 8.0, containing initially 36 μ m occluded MV²⁺, and 31 μ m and 48 μ m external MSV⁺ and MB⁺, respectively, was passed over a Chelex 100 column, it was found that 34 μ m viologen (corrected for dilution), but no MB⁺, co-chromatographed with the vesicles. These results support earlier conclusions that the MV²⁺ dication is impermeable to the DHP membrane on the experimental timescale.^{2—4} Following S₂O₄²⁻ reduction and reoxygenation, chromatographic and spectrophotometric analyses² indicated that only 14 μ M viologen (corrected for dilution) was present within the vesicles, although now ~20 μ M MB⁺ was also internally localized. Oxygen is freely membrane permeable; consequently, it oxidizes viologen radicals on both sides of the membrane without generating a membrane potential. Since MV²⁺ is membrane impermeable, its transmembrane distribution at the end of the reductive half-cycle is 'frozen' upon oxygenation. The demonstration of dithionite reductant-dependent accumulation of MB⁺ within the vesicle establishes that it is actively taken up in response to electrogenic transmembrane oxidation–reduction; further, the loss of compartmented MV²⁺ following reduction indicates that electroneutral MB⁺–MV⁺ transmembrane ion exchange also occurs on the reaction timescale.

The salient reaction characteristics have been incorporated into the mechanism given in Scheme 1. By manipulating the electrostatic charge of a redox mediator through chemical derivatization and asymmetrically distributing it across a bilayer membrane possessing appropriate mediator diffusion characteristics, it has been possible to vectorially couple transmembrane ion and electron flow. This behaviour illustrates the potential for developing switchable electron-conducting membranes exhibiting rectification. Replacement of the membrane-permeable ion by a gated ion channel or lipophilic ion-generating system will provide a means for reversibly switching the membrane between conducting and nonconducting states.

This research is supported by the Office of Basic Energy Sciences, US Department of Energy, under grant DE-AC-06-83ER-13111.

Received, 14th May 1990; Com. 0/02124E

References

- 1 'Molecular Electronic Devices,' eds. F. L. Carter, R. E. Siatkowski, and H. Wohltjen, North-Holland, Amsterdam, 1988; 'Molecular Electronics—Science and Technology,' ed. A. Aviram, Engineering Foundation Publications, New York, 1989.
- 2 J. K. Hurst, in 'Kinetics and Catalysis in Microheterogeneous Systems,' eds. M. Grätzel and K. Kalyanasundaram, Marcel Dekker Surfactant Science Series, 1990, in the press.
- 3 B. C. Patterson, D. H. Thompson, and J. K. Hurst, J. Am. Chem. Soc., 1988, 110, 3656.
- 4 B. C. Patterson, PhD Dissertation, 1990, Oregon Graduate Institute of Science and Technology.